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Abstract
We provide new deviation inequalities in the large deviations band-

width for suprema of empirical processes indexed by classes of uni-
formly bounded functions associated with independent and identically
distributed random variables. The improvements we get concern the
rate function which is, as expected, the Legendre transform of the
suprema of the log-Laplace transform of the pushforward measure by
the functions of the considered class (up to an additional corrective
term). Our approach is based on a decomposition in martingale to-
gether with some comparison inequalities.
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1 Introduction
LetX1, . . . , Xn be a sequence of independent random variables valued in some
measurable space (X ,F), and identically distributed according to a law P .
Let Pn denote the empirical probability measure Pn := n−1(δX1 + . . .+ δXn).
Let F be a countable class of measurable functions f : X → R such that
P (f) = 0 and |f(x)| ≤ 1 for all x ∈ X and all f ∈ F . We are concerned
with exponential deviation inequalities with precise rate functions in the large
deviations bandwidth for the random variable

Z := sup{nPn(f) : f ∈ F}, (1.1)
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around its mean. First, let us briefly recall known results on concentration
of Z around its mean for uniform bounded classes F . Talagrand [23] obtains
a Bennett-type inequality by means of isoperimetric inequalities for product
measures. Ledoux [13] introduces a new method based on entropic inequal-
ities to recover more directly Talagrand’s inequalities. This method, which
allows to bound above the Laplace transform of Z, is the starting point of a
series of papers, mainly to reach optimal constants in Talagrand’s inequali-
ties. Let us cite, among others, Massart [15], Rio [18, 19, 20], Bousquet [7],
Klein [11], Klein and Rio [12]. In the large deviations bandwidth, as rate
function, we expect the Legendre transform of t 7→ supf∈F `f (t), denoted by
`∗F , where `f is the log-Laplace transform `f (t) := logP (etf ) for all t ≥ 0 and
all f ∈ F . Indeed, one has

1
n

logE[etZ ] ≥ sup
f∈F

`f (t) =: `F (t), (1.2)

which implies
1
n

logE[et(Z−E[Z])] ≥ `F (t)− t E[Z]
n

. (1.3)

Now, if E[Z]/n tends to 0 (for example, this condition is satisfied when F is
a Glivenko-Cantelli class), then

lim inf
n→∞

1
n

logE[et(Z−E[Z])] ≥ `F (t). (1.4)

This elementary lower bound shows that the large deviations rate function
`∗F cannot be improved. To the best of our knowledge, the only result in
this direction is obtained in Rio [18] and concerns the particular case of
set-indexed empirical processes. Rio gets as rate function, for the right-hand
side deviations for sets with large measure under P and for the left-hand side
deviations, that of a Bernoulli random variable which actually corresponds to
`∗F . In this paper, we obtain as rate function for the general case, the function
`∗F with an additional corrective term which tends to 0 as n tends to infinity as
soon as F is a weak Glivenko-Cantelli class (see Remark 3.3). Our methods
are only based on martingale techniques and comparison inequalities.

The paper is organized as follows. First, in Section 2 we recall some
definitions and preliminary results on the Conditional Value-At-Risk and
some comparison inequalities. In Section 3 we state the main results of this
paper. We study the rate function `∗F in Section 4. Finally, we provide
detailed proofs in Section 5.
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2 Notation and preliminary results
In this section, we give notation and definitions which we will use all along
the paper. Let us start by the definition of the Conditional Value-at-Risk
(CVaR for short).

Definition 2.1. Let X be a real-valued integrable random variable. Let the
function QX be the càdlàg inverse of x 7→ P(X > x). The Conditional
Value-at-Risk is defined by

Q̃X(u) := u−1
∫ u

0
QX(s)ds for any u ∈ ]0 , 1]. (2.1)

Let us now recall the definition of the Legendre transform of a convex
function.

Definition 2.2. Let φ : [0 ,∞[ → [0 ,∞[ be a convex, nondecreasing and
càdlàg function such that φ(0) = 0. The Legendre transform φ∗ of the func-
tion φ is defined by

φ∗(λ) := sup{λt− φ(t) : t > 0} for any λ ≥ 0. (2.2)

The inverse function of φ∗ admits the following variational expression
(see, for instance, Rio [21, Lemma A.2]).

φ∗−1(x) = inf{t−1(φ(t) + x) : t > 0} for any x ≥ 0. (2.3)

A particular function φ satisfying conditions in Definition 2.2 is the log-
Laplace transform of a random variable:

Notation 2.3. Let X be a real-valued integrable random variable with a finite
Laplace transform on a right neighborhood of 0. The log-Laplace transform
of X, denoted by `X , is defined by

`X(t) := logE[exp(tX)] for any t ≥ 0. (2.4)

The function QX and the CVaR satisfy the following elementary proper-
ties, which are given and proved in Pinelis [16, Theorem 3.4].

Proposition 2.4. Let X and Y be real-valued and integrable random vari-
ables. Then, for any u ∈ ]0 , 1],
(i) P(X > QX(u)) ≤ u,
(ii) QX(u) ≤ Q̃X(u),
(iii) Q̃X+Y (u) ≤ Q̃X(u) + Q̃Y (u).
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(iv) Assume that X has a finite Laplace transform on a right neighborhood
of 0. Then Q̃X(u) ≤ `∗−1

X (log(1/u)).
Remark 2.5. Since we use different notation from that in Pinelis [16], let
us mention that his notation Q0(X;u), Q1(X;u) and Q∞(X;u) correspond
respectively to QX(u), Q̃X(u) and `∗−1

X (log(1/u)).
We now recall comparison inequalities which will be used in the proof

of the main result. Let us first give a notation for a family of distribution
probability.
Notation 2.6. Let α, β be two reals such that α < β. We say that a random
variable θ follows a Bernoulli distribution if it assumes exactly two values
and we write θ ∼ Bm(α, β) if

P(θ = β) = 1− P(θ = α) ∈ ]0 , 1[, and E[θ] = m. (2.5)

Notice that
Var(θ) = (m− α)(β −m). (2.6)

The following classical convex comparison inequality between a bounded
random variableX and a Bernoulli random variable with values of the bounds
of X was first proved by Hoeffding (see Inequalities (4.1) and (4.2) in [10]);
it straight follows by the property of convexity.
Proposition 2.7. Let a, b be two positive reals and let X be a bounded ran-
dom variable such that −a ≤ X ≤ b and E[X] = m. Let θ ∼ Bm(−a, b).
Then, for any convex function ϕ : R→ R,

E[ϕ(X)] ≤ E[ϕ(θ)].

In particular, since E[θ] = m, Var(X) ≤ Var(θ) = (a+m)(b−m).
Next, Bentkus (see Lemmas 4.4 and 4.5 in [3]) proved that a martingale

with bounded from above increments is more concentrate with respect to a
certain class of convex functions than a sum of independent and identically
distributed Bernoulli random variables.
Proposition 2.8. Let b, s2

1, . . . , s
2
n be positive reals. Let Mn := ∑n

k=1Xk be a
martingale with respect to a nondecreasing filtration (Fk) such that M0 = 0,

Xk ≤ b, and E[X2
k | Fk−1] ≤ s2

k a.s. (2.7)

Let s2 := n−1(s2
1 + . . .+s2

n) and Sn := ϑ1 + . . .+ϑn be a sum of n independent
copies of a random variable ϑ with distribution B0(−s2/b, b). Then, for any
convex nondecreasing function ϕ : R → R, differentiable and with convex
derivative,

E[ϕ(Mn)] ≤ E[ϕ(Sn)].
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Remark 2.9. Actually Bentkus obtains the above inequality in a smaller
class of functions. This generalization is due to Pinelis (see Corollary 5.8 in
[17]).

3 Main results
Let us first introduce one more notation. We denote for any k = 1, . . . , n the
expectations

Ek := E sup
f∈F

Pk(f). (3.1)

The main result of the paper is the following theorem:
Theorem 3.1. Let F be a countable class of measurable functions from X
into [−1, 1] such that P (f) = 0 for all f ∈ F . Let Z be defined by (1.1).
For any f ∈ F , let `f and `F be the functions defined by

`f (t) := logP (etf ) and `F (t) := sup
f∈F

`f (t) for any t ≥ 0. (3.2)

Denote Ēn := n−1(E1 + . . .+ En) and define

vn := Ēn
2

(
1− Ēn

2

)
. (3.3)

Let θ(n) be a Bernoulli random variable with distribution B0(−vn, 1). We
denote by `vn the log-Laplace transform of θ(n). Then, for any x ≥ 0,

n−1Q̃Z−E[Z](e−nx) ≤ `∗−1
F (x) + 2 `∗−1

vn (x). (a)

Consequently, for any x ≥ 0,

P(Z − E[Z] > n(`∗−1
F (x) + 2 `∗−1

vn (x))) ≤ e−nx. (b)

The inverse function of `∗vn cannot be explicitly computed. For this reason
we provide below a tractable bound.
Corollary 3.2. Let ψ be the function defined by ψ(0) = 0 and for any positive
x by

ψ(x) :=
√

2x+ 4x/3
log(1 + x/3 +

√
2x)
− 1. (3.4)

Then
`∗−1
vn (x) ≤ vnψ

( x
vn

)
for any x ≥ 0. (a)

Consequently, for any x ≥ 0,

P
(
Z − E[Z] > n

(
`∗−1
F (x) + 2 vnψ

( x
vn

)))
≤ e−nx. (b)
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Remark 3.3. If the class F is a weak Glivenko-Cantelli class, that is
supf∈F |Pn(f)| converges to 0 in probability, then En decreases to 0 (see,
for instance, Section 2.4 of van der Vaart and Wellner [24]) and so vn
also decreases to 0 (we recall that Ēn ≤ 1). Consequently, recalling that
`vn(t) = log(vnet + e−tvn)− log(1 + vn), we assert by the variational formula
(2.3) that

lim
n→∞

`∗−1
vn (x) = 0 for all x ≥ 0. (3.5)

Therefrom 2 `∗−1
vn (x) is just a correctional term. Moreover, note that ψ(x)/x

tends to 0 as x tends to infinity and thus,

lim
n→∞

vnψ
( x
vn

)
= 0 for all x ≥ 0. (3.6)

Hence, the bound given in Corollary 3.2 is still relevant in the large deviations
bandwidth.
Consider now the classical bound `vn(t) ≤ vn t

2/(2− 2t/3) for any t ∈ [0 , 3[,
which follows from the domination by a centered Poisson distribution. This
leads to

`∗−1
vn (x) ≤

√
2vnx+ x

3 . (3.7)

Note that the right-hand side does not tend to 0 contrary to the other bounds
which makes (3.7) non efficient in the large deviations bandwidth.

Remark 3.4. Let us mention another possibly upper bound for `∗−1
vn which

is more reader friendly than Inequality (a) of Corollary 3.2 and still relevant
in the large deviations bandwidth. Lemma 2.26 of Bercu, Delyon and Rio [4]
gives that `∗vn(x) ≥ x2/ϕ(vn) where ϕ(v) = (1−v2)/| log(v)| for any v ∈ ]0 , 1[
(recall that vn ≤ 1/4). Hence, this yields the upper bound

`∗−1
vn (x) ≤

√
xϕ(vn) for any x ≥ 0. (3.8)

Notice that
√
xϕ(vn) ≤ vnψ(x/vn) only for large values of x.

Remark 3.5 (On the large deviations on the left). Assume that F is a
Glivenko-Cantelli class and that the identically zero function belongs to F .
Then E[Z] is small with respect to n and Z ≥ 0. Thus for any x > 0,
P(Z − E[Z] ≤ −nx) = 0 for n large enough.

Remark 3.6 (Explicit bound for vn). In view of (3.3), since the function
x 7→ x(1 − x) is increasing between 0 and 1/2, in order to provide a more
explicit bound for vn, we only have to provide a bound for Ēn (which is lower
than 1 and tends to 0 as n tends to infinity). To this end, we shall use the
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recent results of Baraud [1] who provides (see his Theorems 2.1 and 2.2) upper
bounds with explicit constants for the expectations of suprema of empirical
processes, under the hypothesis that F is a weak VC-major class.

Assume then that F is a weak VC-major class with dimension d. Let
σ2 := supf∈F P (f 2) denote the wimpy variance. Then Inequality (2.8) in [1]
implies the following proposition (the proof is postponed to Section 5).

Proposition 3.7. Assume that n ≥ d. Then

Ēn ≤ 2
√

2σ log(e/σ)n−1/2
(√

C1(d) +
√
C2(n, d)

)
+ 8n−1

(
C1(d) + C2(n, d)

)
,

(a)
where

C1(d) := log(2)
d∑

k=1
(1 + 1/k) and

C2(n, d) := (d/2) log
(
n+ 1/2
d+ 1/2

)
log

(
4 e

2

d2 (n+ 1/2)(d+ 1/2)
)
.

As n tends to infinity, the right-hand side of (a) admits the following behavior

2
√

2σ log(e/σ)n−1/2 log(n) + 4 d n−1 log2(n). (b)

We end this section by giving a simple example where the function `F is
explicit.

Example 3.8. Let S be a countable class of sets. Let ε1, . . . , εn be a sequence
of independent Rademacher random variables and independent of X1, . . . , Xn.
Define

Z := sup
S∈S

n∑
k=1

εk1S(Xk). (3.9)

For any S ∈ S and any k = 1, . . . , n, we get by a straightforward calculation

`S(t) := logE[etεk1S(Xk)] = log(1+P (S)(cosh(t)−1)) for any t ≥ 0. (3.10)

Clearly the right-hand side is increasing with respect to P (S). Then

`S (t) := sup
S∈S

`S(t) = log(1 + p(cosh(t)− 1)) for any t ≥ 0, (3.11)

where p := sup{P (S) : S ∈ S }. By (2.3), `∗−1
S is then given by the varia-

tional formula

`∗−1
S (x) = inf

t>0

{
t−1
(
x+ log(1 + p(cosh(t)− 1))

)}
for any x ≥ 0. (3.12)

We also refer the reader to Bennett [2], p. 532, for an explicit formula of `∗S .
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4 About the rate function `∗F

4.1 Comments on Large Deviation Principle
In this subsection we explain how the rate function `∗F arises in the large
deviations theory for suprema of bounded empirical processes.

Throughout this section, we assume that for all f ∈ F , 0 ≤ f ≤ 1. We
denote by l∞(F ) the space of all bounded real functions on F equipped with
the norm ‖F‖F := supf∈F |F (f)|, making (l∞(F ), ‖.‖∞) a Banach space.
For each finite measure ν on (X ,F) corresponds to an element νF ∈ l∞(F )
defined by νF (f) := ν(f) =

∫
fdν for any f ∈ F . With a slight abuse of

notation, we will keep the notation ν instead of νF . Wu [25] gives necessary
and sufficient conditions with respect to F which ensure that Pn satisfies the
Large Deviation Principle (LDP for short) in l∞(F ). We refer the reader to
the paper of Wu for these conditions (for example, if F is a Donsker class
then the required conditions are satisfied). The (good) rate function is given
by

hF (F ) := inf{H(ν | P ) : ν is a probability and ν = F on F}, (4.1)

where H(ν | P ) is the relative entropy of ν with respect to P given, as soon
as ν is absolutely continuous with respect to P , by

H(ν, P ) :=
∫ dν

dP
log

(
dν

dP

)
dP. (4.2)

Therefrom, a direct application of the contraction principle (see, for instance,
Theorem 4.2.1 in Dembo and Zeitouni [9]) ensures that ‖Pn‖F satisfies the
LDP with rate function given by

J(y) := inf{H(ν | P ) : ν is a probability and ‖ν‖F = y} for any y ∈ [0 , 1[.
(4.3)

We prove the following lemma which gives a better understanding of the rate
function J :

Lemma 4.1. J(y) = inff∈F `∗f (y), where `f (t) := logP (etf ) for any t ≥ 0.

The important remark is that if we can invert the infimum and the supre-
mum in inff∈F supt>0{ty−`f (y)}, we get that inff∈F `∗f (y) = `∗F (y). It seems
not possible to invert the infimum and the supremum in general. However,
note that we always have the inequality inff∈F `∗f (y) ≥ `∗F (y). In the follow-
ing proposition, we describe a particular case in which the inversion is valid,
which then simplifies the calculation of `∗F . Since it directly follows from a
minimax theorem (see, for instance, Corollary 3.3 in Sion [22]), we omit the
proof.
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Proposition 4.2. Let X be a random variable valued in (X ,F) with distri-
bution P . Let F be a countable class of measurable functions from X into
[−1 , 1] such that P (f) = 0 for all f ∈ F . Let Θ be a convex compact subset
of a vector space. Let {µθ : θ ∈ Θ} be a family of probability distribution on
[−1 , 1] such that, for any t ≥ 0, θ 7→ `µθ(t) := log

∫
etzµθ(dz) is concave and

upper semi-continuous. We assume that for all f ∈ F , there exists θ ∈ Θ
such that f(X) has the distribution µθ. Then,

`∗F (x) ≥ inf
θ∈Θ

`∗µθ(x) for any x ≥ 0.

Example 4.3 (Set-indexed empirical processes). Let X be a random variable
valued in (X ,F) with distribution P and let S be a countable class of measur-
able sets of X . We consider the class of functions F := {1S−P (S) : S ∈ S }.
Define p := sup{P (S) : S ∈ S } and assume that p < 1/2. For any θ ∈ [0 , p],
let us define the function `θ(t) := log(1 + θ(et− 1))− θt for any t ≥ 0. Then
Proposition 4.2 yields

`∗F (x) ≥ inf
θ∈[0,p]

`∗θ(x) for any x ≥ 0. (4.4)

The computation of the right-hand side of (4.4) is performed by Rio (see p.
175 in [18]): for any x ≤ 1− 2p,

inf
θ∈[0,p]

`∗θ(x) = `∗p(x) = (p+x) log(1+x/p)+(1−p−x) log(1−x/(1−p)). (4.5)

Furthermore, for any x ≥ 1− 2p,

inf
θ∈[0,p]

`∗θ(x) ≥ `∗p(1− 2p) +
∫ x

1−2p
(`∗(1−y)/2)′(y)dy

= 2(1 + x) log (1 + x) + 2(1− x) log(1− x)
− (1 + 2p) log(2p)− (3− 2p) log(2− 2p).

(4.6)

Remark 4.4. Proceeding as in the proof of Theorem 4.2 in Rio [18], one
can derive from Theorem 6.3 in Bousquet [7] that, if p0 := p + En satisfies
p0 < 1/2, then for any t > 0 such that p0 < (tet − et + 1)(et − 1)−2,

n−1 logE[exp(t(Z − E[Z]))] ≤ log(1 + p0(et − 1))− tp0. (4.7)

Now (4.7) and the usual Cramér-Chernoff calculation, imply that P(Z −
E[Z] ≥ nx) ≤ exp(−n`∗p0(x)), for any x > 0 such that

x ≤ (x+ p0)(1− x− p0) log
((1− p0)

p0

(t+ p0)
(1− t− p0)

)
. (4.8)
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Bousquet [7] tells without proof that (4.8) holds for any x ≤ (3/4)(1− 2p0).
If x = x0 := 1− 2p0, (4.8) is equivalent to

p0(1− p0) ≥ (1− 2p0)/2 log(1/p0 − 1),
which is wrong (see Hoeffding [10] p. 19). Recall now that Bousquet’s results
are derived from the entropy method introduced by Ledoux [13] on the con-
text of concentration inequalities. It appears here that this method does not
provide the exact rate function for large values of x, including x = 1− 2p0.

4.2 The case of nondecreasing 1-Lipschitz functions
Here we study the special case of F included in the set of nondecreasing
1-Lipschitz functions. We can then bound above `∗−1

F by a more tractable
quantity.
Corollary 4.5. Let X be a random variable valued in (X ,F) with distri-
bution P and X1, . . . , Xn be n independent copies of X. Let F be a count-
able class of measurable functions from X into [−1 , 1], nondecreasing, 1-
Lipschitz and such that P (f) = 0 for all f ∈ F . Let Z be defined by (1.1).
Moreover, we assume that the distribution P satisfies that for any t ∈ R,∫
etxP (dx) <∞. Then

`∗−1
F (x) ≤ `∗−1

X−E[X](x) for any x ≥ 0. (a)
Consequently, for any x ≥ 0,

P
(
Z − E[Z] > n(`∗−1

X−E[X](x) + 2 `∗−1
vn (x))

)
≤ e−nx. (b)

Example 4.6. Let P be the uniform distribution on [−1 , 1]. Then, by (2.3),
`∗−1
X is given by the following variational formula whose values in every point
is computable:

`∗−1
X (x) = inf

t>0

{1
t

(
x+ log

(sinh(t)
t

))}
for any x ≥ 0. (4.9)

Let us also provide a bound of `∗−1
X which is relevant for large values of x.

Since sinh(t) ≤ et/2 for any t > 0, one has

`∗−1
X (x) ≤ 1 + inf

t>0

{1
t
(x− log(2t))

}
for any x ≥ 0. (4.10)

Then, for each x ≥ 0, the infimum in (4.10) is reached at tx := ex+1/2, which
leads to

`∗−1
X (x) ≤ 1− 2

e
e−x for any x ≥ 0. (4.11)

Furthermore, one can prove that `∗−1
X (x) is equivalent to 1− 2

e
e−x as x tends

to infinity.
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5 Proofs

5.1 Proofs of Section 3
Proof of Theorem 3.1. First, notice that (b) follows immediately from (a)
by Proposition 2.4 (i) and (ii). Let us now prove (a). Our method is
based on a martingale decomposition of Z which we now recall. We sup-
pose that F is a finite class of functions, that is F = {fi : i ∈ {1, . . . ,m}}.
The results in the countable case are derived from the finite case using the
monotone convergence theorem. Set F0 := {∅,Ω} and for all k = 1, . . . , n,
Fk := σ(X1, . . . , Xk) and Fkn := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn). Let Ek (re-
spectively Ekn) denote the conditional expectation operator associated with
Fk (resp. Fkn). Set also

Zk := Ek[Z], Z(k) := sup{nPn(f)− f(Xk) : f ∈ F}. (5.1)

The sequence (Zk) is an (Fk)-adapted martingale and

Z − E[Z] =
n∑
k=1

∆k, where ∆k := Zk − Zk−1. (5.2)

Define now the random indices τ and τk, respectively Fn-measurable and
Fkn-measurable, by

τ := inf{i ∈ {1, . . . ,m} : nPn(fi) = Z}, (5.3)
τk := inf{i ∈ {1, . . . ,m} : nPn(fi)− fi(Xk) = Z(k)}. (5.4)

Notice first that

Z(k) + fτk(Xk) ≤ Z ≤ Z(k) + fτ (Xk).

From this, conditioning by Fk gives

Ek[fτk(Xk)] ≤ Zk − Ek[Z(k)] ≤ Ek[fτ (Xk)]. (5.5)

Set now ξk := Ek[fτk(Xk)] and let εk ≥ rk ≥ 0 be random variables such that

ξk + rk = Zk − Ek[Z(k)] and ξk + εk = Ek[fτ (Xk)].

Thus (5.5) becomes
ξk ≤ ξk + rk ≤ ξk + εk. (5.6)

Since τk is Fkn-measurable, we have by the centering assumption on the ele-
ments of F ,

Ekn[fτk(Xk)] = P (fτk) = 0 a.s., (5.7)
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which ensures that Ek−1[ξk] = 0. Moreover, Ek[Z(k)] is Fk−1-measurable.
Hence we get

∆k = Zk − Ek[Z(k)]− Ek−1[Zk − Ek[Z(k)]] = ξk + rk − Ek−1[rk],

which combined with (5.2) yield the decomposition of Z − E[Z] in a sum of
two martingales:

Z − E[Z] = Ξn +Rn, (5.8)

where
Ξn :=

n∑
k=1

ξk and Rn :=
n∑
k=1

(rk − Ek−1[rk]). (5.9)

Now, we bound above separately the log-Laplace transforms of Ξn and Rn.
Lemma 5.1. We have

logE
[

exp
(
tΞn

)]
≤ n `F (t) for any t ≥ 0.

Proof of Lemma 5.1. The F k
n -measurability of τk gives

Ekn[exp(tfτk(Xk))] = P (etfτk ). (5.10)

This ensures, with an application of the conditional Jensen inequality, that

Ek−1[etξk ] = Ek−1Ekn[etξk ] ≤ Ek−1[P (etfτk )] ≤ sup
f∈F

P (etf ), (5.11)

almost surely. Then Lemma 5.1 follows by an immediate induction on n.

Lemma 5.2. We have

logE
[

exp
(
t Rn

)]
≤ n `vn(2 t) for any t ≥ 0.

Proof of Lemma 5.2. Actually, the inequality follows by taking ϕ(x) = etx

with t ≥ 0 in the more general comparison inequality below:
Lemma 5.3. Let θ(n)

1 , . . . , θ(n)
n be a sequence of n independent copies of θ(n)

with B0(−vn, 1) distribution. Then, for any convex nondecreasing function ϕ
from R into R, differentiable and with convex derivative,

E[ϕ(Rn)] ≤ E
[
ϕ
(

2
n∑
k=1

θ
(n)
k

)]
.

12



Proof of Lemma 5.3. We start the proof by showing that

rk − Ek−1[rk] ≤ 2, and Var(rk | Fk−1) ≤ En−k+1(2− En−k+1) a.s. (5.12)

The first inequality above is straightforward by (5.6) and the uniform bound-
edness condition on F . Let us prove now the second inequality. We start
by bounding above Var(rk | Fk−1) in terms of Ek−1[rk]. Since 0 ≤ rk ≤ 2,
Proposition 2.7, applied conditionally to Fk−1, yields

Var(rk | Fk−1) ≤ Ek−1[rk](2− Ek−1[rk]) a.s. (5.13)

Next, we prove that Ek−1[rk] is bounded above by a deterministic constant.
Lemma 5.4. We have 0 ≤ Ek−1[rk] ≤ En−k+1 ≤ 1 a.s.

Proof of Lemma 5.4. The proof is based on the following result on exchange-
ability of variables, proved in Marchina [14]. Since it is the fundamental tool
of the paper, we give again the proof for sake of completeness.
Lemma 5.5. For any integer j ≥ k, Ek−1[fτ (Xk)] = Ek−1[fτ (Xj)] a.s.

Proof of Lemma 5.5. By the definition of the random index τ , for every per-
mutation on n elements σ, τ(X1, . . . , Xn) = τ ◦ σ(X1, . . . , Xn) almost surely.
Applying now this fact to σ = (k j) (the transposition which exchanges k
and j), it suffices to use Fubini’s theorem (recalling that j ≥ k) to complete
the proof.

Then,

Ek−1[εk] = Ek−1[fτ (Xk)]
= Ek−1[fτ (Xk) + . . .+ fτ (Xn)]/(n− k + 1)
≤ Ek−1 sup

f∈F
{f(Xk) + . . .+ f(Xn)}/(n− k + 1) = En−k+1. (5.14)

Recalling that 0 ≤ rk ≤ εk, we get 0 ≤ Ek−1[rk] ≤ En−k+1. The bound
En−k+1 ≤ 1 is straightforward by the uniform boundedness condition on the
elements of F , which ends the proof of Lemma 5.4.

Finally, (5.13) together with Lemma 5.4 and the fact that x 7→ x(2− x)
is increasing between 0 and 1, imply

Var(rk | Fk−1) ≤ En−k+1(2− En−k+1) a.s., (5.15)

Now, Proposition 2.8 yields that for any convex, nondecreasing function ϕ
differentiable with convex derivative,

E[ϕ(Rn)] ≤ E
[
ϕ
( n∑
k=1

ϑ
(n)
k

)]
, (5.16)
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where ϑ(n)
1 , . . . , ϑ(n)

n is a sequence of i.i.d. random variables such that ϑ(n)
k

has the distribution B0(−ṽn, 2) with ṽn := ∑n
k=1Ek(2−Ek). Moreover, since

x 7→ x(2− x) is concave, ṽn ≤ Ēn(2− Ēn). Finally Hoeffding’s convex com-
parison inequality (Proposition 2.7) yields that for any convex, nondecreasing
function ϕ differentiable with convex derivative,

E
[
ϕ
( n∑
k=1

ϑ
(n)
k

)]
≤ E

[
ϕ
(

2
n∑
k=1

θ
(n)
k

)]
, (5.17)

This inequality associated with (5.16) conclude the proof of Lemma 5.3.

As mentioned at the beginning of the proof, this also concludes the proof
of Lemma 5.2 by taking ϕ(x) = etx with t ≥ 0.

Let us now complete the proof of Theorem 3.1. From (2.3) and Lemmas
5.1–5.2 we derive for any x ≥ 0,

`∗−1
Ξn (nx) ≤ n `∗−1

F (x) and `∗−1
Rn (nx) ≤ 2n `∗−1

vn (x). (5.18)

Furthermore, from Proposition 2.4 (iii), (iv) and (5.8)

Q̃Z−E[Z](e−nx) ≤ Q̃Ξn(e−nx) + Q̃Rn(e−nx)
≤ `∗−1

Ξn (nx) + `∗−1
Rn (nx). (5.19)

Finally, both (5.19) and (5.18) conclude the proof of Theorem 3.1 (a).

Proof of Corollary 3.2. Let Πn be a random variable with Poisson distribu-
tion with parameter vn and let Π̃n := Πn − vn. A classical result gives
`vn(t) ≤ `Π̃n(t) for any t ≥ 0 (see, for instance, Theorem 2.9 of [6]). There-
fore, for any x ≥ 0,

`∗−1
vn (x) ≤ `∗−1

Π̃n
(x) = vn h

−1
( x
vn

)
, (5.20)

where h(u) := (1+u) log(1+u)−u for any u ≥ 0. Next, a Newton algorithm
performed in Del Moral and Rio (see Appendix A.6 in [8]) allows to derive
the bound h−1(x) ≤ ψ(x), which concludes the proof of Corollary 3.2.

Proof of Proposition 3.7. Inequality (2.8) in Baraud [1] implies that for any
k = 1, . . . , n,

Ek ≤ 2
√

2σ log(e/σ)
√

Γ̃k(d) + 8 Γ̃k(d), (5.21)
where

Γ̃k(d) := k−1 log
(

2
d∧k∑
j=0

(
k

j

))
. (5.22)
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We recall (see p. 1714 in [1]) that, for any d ≥ k, Γ̃k(d) = log(2)(k + 1)/k
and for any d < k,

Γ̃k(d) ≤ d

k
log

(2e
d
k
)
. (5.23)

Moreover, observe that by the concavity of x 7→
√
x, one has

1
n

n∑
k=1

√
Γ̃k(d) ≤

√√√√ 1
n

n∑
k=1

Γ̃k(d). (5.24)

Then, since Ēn = n−1(E1 + . . . + En), the previous facts together with the
sub-additivity of x 7→

√
x yield

Ēn ≤ 2
√

2σ log(e/σ)n−1/2
(√

C1(d) +
( n∑
k=d+1

d

k
log

(2e
d
k
))1/2 )

+ 8n−1
(
C1(d) +

n∑
k=d+1

d

k
log

(2e
d
k
))
. (5.25)

Observe now that the function h defined by h(x) := x−1 log((2e/d)x) is con-
vex (at least) on [d,+∞[. Thus for any integer k > d, h(k) ≤

∫ k+1/2
k−1/2 h(x)dx.

Summing then this inequality from d+ 1 to n gives
n∑

k=d+1
h(k) ≤ 1

2 log
(
n+ 1/2
d+ 1/2

)
log

(4e2

d2 (n+ 1/2)(d+ 1/2)
)
. (5.26)

Finally injecting (5.26) in (5.25) concludes the proof.

5.2 Proofs of Section 4
Proof of Lemma 4.1. Throughout the proof, we use the notation I(y) =
inff∈F `∗f (y).
(i) Proof of J(y) ≤ I(y).
Let y ∈ [0 , 1] and let ε > 0. There exists a function f ∈ F such that
`∗f (y) ≤ I(y) + ε. Now, Cramér’s Theorem ensures that

lim
n→∞

n−1 logP(Pn(f) ≥ y) = −`∗f (y). (5.27)

Since ‖Pn‖F satisfies the LDP with rate function J and since Pn(f) ≤ ‖Pn‖F
for all f ∈ F , we get

− J(y) ≥ lim sup
n→∞

n−1 logP(‖Pn‖F ≥ y)

≥ lim
n→∞

n−1 logP(Pn(f) ≥ y) = −`∗f (y). (5.28)
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Therefrom J(y) ≤ I(y) + ε. Since ε > 0 is arbitrary, we conclude the proof
by letting ε tends to 0.
(ii) Proof of J(y) ≥ I(y).
Since the infima may be written as the limit of a sequence of infima taken over
finite subsets, it is enough to prove the inequality for a finite class of functions
F . Let y ∈ [0 , 1] and t > 0. Let ν be a probability measure absolutely
continuous with respect to P such that ‖ν‖F = y. Let d := (dν/dP ) be the
Radon-Nikodym derivative of ν with respect to P and set gf := tf−logP (etf )
for any f ∈ F . Young’s inequality (see, for instance, Equation (A.2) in Rio
[21]) implies that

tν(f)− logP (etf ) =
∫
dgf dP ≤

∫
egfdP +

∫
(d log d− d) dP. (5.29)

Since
∫
egfdP = 1, (5.29) leads to

tν(f)− logP (etf ) ≤ H(ν | P ). (5.30)

In particular (5.30) is valid for the function f̃ ∈ F which satisfies y = ν(f̃)
(recall that F is finite) and for any t > 0. Then we have

`∗f̃ (y) ≤ H(ν | P ), (5.31)

which implies I(y) ≤ J(y) and ends the proof.

Proof of Corollary 4.5. Let X be a random variable with distribution P .
Recalling that P (f) = 0 for any f ∈ F , Lemma 2 of Bobkov [5] states that
for any convex function ϕ : R→ R and for any f ∈ F ,

E[ϕ(f(X))] ≤ E[ϕ(X − E[X])].

In particular with ϕ(x) = etx, t ≥ 0,

`F (t) = sup
f∈F

`f (t) ≤ logE[et(X−E[X])] = `X−E[X](t). (5.32)

Thus the variational formula (2.3) implies `∗−1
F (x) ≤ `∗−1

X−E[X](x) for all x ≥ 0.
An application of Theorem 3.1 completes the proof.

Acknowledgments. I would like to thank Emmanuel Rio for many insight-
ful discussions and suggestions.
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