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Abstract
In this paper, we provide left deviation inequalities for suprema of
unbounded empirical processes associated with independent and iden-
tically distributed random variables by means of martingale methods.
This work complete the paper [10] in which the deviation on the right-
hand side of the mean is studied.

1 Introduction and notations

In the recent paper [10], we prove new upper bounds on the deviation above
the mean for suprema of empirical processes indexed by classes of unbounded
functions. More specifically, let X;,..., X, be a finite sequence of indepen-
dent random variables and identically distributed according to a law P, val-
ued in some measurable space (X, F) and let .# be a countable class of
measurable functions from X to R. We assume that for all f € %, P(f) =0
and that .# has a square integrable envelope function ®, that is

|f| < ® for any f € .%,and ® € L2 (1.1)

We set .
Z :=sup Y f(Xy). (1.2)

feZ k=1

If ®(X) admits a finite weak moment of order £ > 2 (denoted by A (®(X}))),
we establish the following Fuk-Nagaev type upper bound on the Conditionnal
Value at Risk (CVaR for short, see Definition [1.1] below) of Z — E[Z]:

Qz-s2)(u) < \/21og(1/u) (av/n+ [V ) + 30" AF (@(X1))u ™, (1.3)

*Université Paris-Est, LAMA (UMR 8050), UPEM, CNRS, UPEC. E-mail: antoine.

marchina@u-pem.fr



mailto:antoine.marchina@u-pem.fr
mailto:antoine.marchina@u-pem.fr

for any u € ]0,1[. Here 0® := sup;c» P(f?), pe := 24+max(4/3,£/3) and V,, is
an explicit corrective term. We recall that an upper bound on the CVaR leads
to a deviation inequality (see Proposition further). We stress out that
there are few results in the literature concerning concentration inequalities for
suprema of unbounded empirical processes whose main ones can be found in
Boucheron, Bousquet, Lugosi and Massart [5], Adamczak [I] and Lederer and
van de Geer [16], 9]. Their results provide a less accurate estimate compared
to (L.3). In these papers, the deviation is around (1 + n)E[Z] with n > 0
and/or the constants are nonexplicit or nonoptimal.

The purpose of this paper is to complete the analysis started in [10], by
providing upper bounds for the left-hand side deviations, also in unbounded
settings. We consider four different cases:

supse #(—f)4(X1) admits a weak moment of order £ > 2.

For all f € .#, f(X1) admits a sub-Gamma tail on the left

For all f € %, f(X;) admits a sub-Gaussian tail on the left.

Suprema of randomized empirical processes.

It is worth noticing that the left-hand side deviations around the mean for 7
heavily depend on the behavior of the left tails (under the distribution P) of
the functions in the class .%. The behavior of right tails only takes part in a
corrective term in the subgaussian coefficient in our inequalities. The main
results, under the assumptions mentionned above, are stated respectively in
Sections 2, 3, 4 and 5. All the proofs are postponed to Section 6.

In the rest of this section, we give notations and definitions which we
will use all along the paper. Let us start with the classical notations x, :=
max (0, z) and ¢ := (x4)® for all real x and a. Next, we define the quantile
function and the Conditional Value-at-Risk.

Definition 1.1. Let X be a real-valued integrable random variable. Let the
function Qx be the cadlag inverse of x +— P(X > z). The Conditional
Value-at-Risk is defined by

Qx(u) :=u"! /OuQx(S)dS for any u € 10, 1]. (1.4)

Let us now recall the definition of the Legendre transform of a convex
function.



Definition 1.2. Let ¢ : [0,00[ — [0,00] be a convez, nondecreasing and
cadlag function such that ¢(0) = 0. The Legendre transform ¢* of the func-
tion ¢ is defined by

¢"(N) :=sup{At — ¢(t) : t >0} for any A > 0. (1.5)

The inverse function of ¢* admits the following variational expression
(see, for instance, Rio [14, Lemma A.2]).

¢* ' (z) =inf{t " *(¢(t) +x) : t > 0} for any x > 0. (1.6)

A particular function ¢ satisfying conditions of Definition is the log-
Laplace transform of a random variable:

Notation 1.3. Let X be a real-valued integrable random variable with a finite
Laplace transform on right neighborhood of 0. The log-Laplace transform of
X, denoted by lx, is defined by

Ux(t) :=logElexp(tX)] for anyt > 0. (1.7)

The function @) x and the CVaR satisfy the following elementary proper-
ties, which are given and proved in Pinelis [12, Theorem 3.4].

Proposition 1.4. Let X and Y be real-valued and integrable random vari-
ables. Then, for any u €]0,1],

(i) P(X > Qx(v) < u,
(i) Qx(u) < Qx(u),
(iii) Qxyy(u) < Qx(u) + Qy (u).

(iv) Assume that X has a finite Laplace transform on a right neighborhood
of 0. Then Qx(u) < % *(log(1/u)).

Remark 1.5. Since we use different notations from those of Pinelis, let
us mention that his notations Qo(X;u), Q1(X;u) and Quw(X;u) correspond
respectively to Qx(u), Qx(u) and £ *(log(1/u)).

Let us now define the following class of distribution functions.

Notation 1.6. Let g € [0,1]. Let ¢ be a nonnegative random variable. We
denote by Fy the distribution function of ¢ and by FJI the cadlag inverse
of Fy. Set by g := FJl(l —q). We denote by F,, the distribution function
defined by

Fy () == (1 = @) locacp,,, + Fp(2)Lizp, - (1.8)



Set for any k=1,...,n,
Ey := E[sup Pk(f)}, (1.9)
fez

and let ¢j denote a random variable with distribution function Fog(x,) g,
where ¢, is the real in [0, 1] such that E[(x] = Ek. Let us now define the
quantity which appears in all of our inequalities in the corrective term in the
subgaussian coefficient:

Va:= Y E[) (1.10)
k=1
The justification of the term "corrective" is given by this remark:

Remark 1.7. If the class .F satisfies the uniform law of large numbers,
that is sup ez |Pu(f)| converges to 0 in probability, then E, decreases to 0
(see, for instance, Section 2.4 of van der Vaart and Wellner [17]). Now,
from the integrability of ®* and , the convergence of E, to 0 implies the
convergence of B[C2] to 0, which ensures that V,, = o(n) asn tends to infinity.

2 Fuk-Nagaev type inequalities

In this Section we provide Fuk-Nagaev type inequalities which allow us to
derive strong and weak moment inequalities. These left deviation inequalities
are the exact counterparts of the right deviation inequalities stated in [10].
We recall that ® := sup. z | f| and we define also ®~ := sup ;e »(—f)+.

2.1 General inequalities

Theorem 2.1. Let x > 0. For any s > 0, we have

P(Z < E[Z PP 2’ Plo(X,) > =
(2= []—x)_( +43n02> +exp<—8vn>+n ( ( 1)_25)’

where V,, is defined by (1.10)).

Consequently, if &~ (X;) admits an /-th moment, we derive then by inte-
grating the above inequality the following moment inequality:

Corollary 2.2. Let £ > 2. Assume that ®~(X,) is L‘-integrable. Then
I(ELZ) = 2) 4 lle < 28, /VE+T(0v/n + 60y /Va ) + 2050+ 1) |07 (X0l

where By == <(\/7_r/2) 0/2)/T((¢ + 1)/2))1/6, 50 = V2/ay,
and oy = (ﬁ/F((€ + 1)/2))1/6\% +1.
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Remark 2.3. Note that (/! < e'/¢ ~ 1.4447, and 0.8995 < B, < 1 for all
{ > 2. Moreover, 0y = 1//3 and { +— &, increases to 1/+/e as { tends to

infinity.
2.2 Under weak moments assumptions

We first introduce some more definitions and notations. For any real-valued
integrable random variable X and any r» > 1, let

AN(X) = sugt (P(X > t))"". (2.1)

We say that X have a weak moment of order r if A (]X]) is finite. Define
also

AF(X) = sup ut/"~ / Qx(s (2.2)
u€)0,1]
From the definition of Q)x, we have
AFH(X) = sup v Qx(u). (2.3)
u€]0,1]
Hence, we get that
AF(X) < AF(X) < (55)AF(X). (2.4)

Furthermore, from Proposition [1.4| (ii7), AF(.) is subadditive. The main
result of this section is the following Fuk-Nagaev type inequality for E[Z]— Z.

Theorem 2.4. Let { > 2. Assume that ®~(X;) have a weak moment of
order 0. Then for any u € 10, 1],

QEe[z)-z(u) < QE[Z}—Z<U> (a)
< \/210g(1/u) (ov/m + Vi ) + 0 e AF (@ (X)), (0)

where g = 2 +max(4/3,0/3) and V,, is defined by ([T10). Consequently,
P(Z < B[Z] - \/2log(1/u) (ov/n + y/Va ) = /' A (@7 (X1))u™") <
(€)

Corollary 2.5. Let ¢ > 2. Assume that ®~(X;) have a weak moment of
order {. Then

AF(B[Z] - 2) < A} (B[Z) - 2) (a)
< \J(t/e)(ovn+ Ve ) + 0 AF(@7(X1), ()

where 1 := 2 + max(4/3,0/3).



2.3 Application to power-type tail

Let Y1,...,Y, be a finite sequence of nonnegative, independent and identi-
cally distributed random variables and let Xy,..., X, be a finite sequence
of independent and identically distributed random variables with values in
some measurable space (X, F) such that the two sequences are independent.
Let P denote the common distribution of the Xj,. Let ¢ be a countable class
of measurable functions from X into [—1, 1] such that for all g € ¢4,

P(g) =0 and P(g*) < ® for some § €]0, 1]. (2.5)
Let G be a measurable envelope function of ¢, that is
lg| < G for any g € 4, and G(z) < 1 for all x € X. (2.6)
Let G~ be a measurable function such that
(—g)+ <G forany g€ ¥, and G~ (z) < 1forall z € X. (2.7)

We suppose furthermore that for some constant p > 2,

P(Y; >t) <t™? foranyt>0. (2.8)

Define now .
Z :=sup »_ Y, g(Xy). (2.9)

99 k=1

Deviations of Z above the mean are studied in [I0] and more precise
bounds for V,, in terms of the uniform entropy integral (using a result of van
der Vaart and Wellner [I8]) are given. Here, we prodive upper bounds for
the left-hand side deviations. Since the proofs are rather equivalent, we refer
the reader to [I0] for the details.

Let us first recall the definitions of covering numbers and uniform entropy
integral.

Definition 2.6 (Covering number and uniform entropy integral). The cov-
ering number N(e,9,Q) is the minimal number of balls of radius € in L*(Q)
needed to cover the set . The uniform entropy integral is defined by

9
J(6,9) = sgp/O \/1 +1log N(el|Gllga. 4, Q) de.

Here, the supremum is taken over all finitely discrete probability distributions
Q on (X, F) and || f|lg2 denotes the norm of a function f in L*(Q).



In the following theorem, K denotes an universal constant which may
change from line to line.

Theorem 2.7. Let p > 2. Let Z be defined by (2.9). Under conditions ([2.5))
- (2.8)), the following results hold:
(i) If Yy is LP-integrable, then

ICE[Z] = Z) 4l

<20 T ok 2 (o T i (P52 )

+2n'?(p+ DNl 167 (X)) llp, (@)

uhere 5, = (/2 T0/2) T+ /)

(it) Moreover,

Ay (E[Z] - Z)

P

{5 o 25

+n' P, (b)
where ¢ =p/(p — 1) and p, = 2+ max(4/3,p/3).

3 Under sub-Gamma tails on the left assump-
tions

Here we assume that f(X;) admits a sub-Gamma tail on the left for all
fez.

To the best of our knowledge, there exists only one exponential inequality
for the left-hand side deviations of suprema of empirical processes in the
unbounded case (from one side) which is due to Klein [8]. More precisely,
Klein provides an upper bound on the Laplace transform of E[Z] — Z which
implies the following deviation inequality:

Theorem 3.1 (Theorem 1.1 (3) in [8]). Assume that for all f € F, f <1,
and for all integer p > 2, |P(f?)| < o?p!/2. Then

/20, .
IP’(Z < E[Z] — V2zv, —x — W> < exp(—x),

where v, = no* + 2E[Z].



The objective here is to relax the boundedness assumption on the right.
Our main result is the following:

Theorem 3.2. Assume that there exists a positive constant ¢ such that for
any [ € .F and any t € 10, (],
2t2

log P(e7") < 7

e (3.1)

Then for any u € 10, 1],

Qrz-2(v) < Qgpz)-z(u) (a)
< \/2log(1/u) (ov/n + \/Va, ) + clog(1/u). (b)

Consequently, for any x > 0,

]P’(Z < E[Z] - @(0\/54— \/Vn) - cx) < exp(—x). (c)

Remark 3.3. If the elements of % satisfy Bernstein’s moment conditions
on the left, then the hypothesis (3.1)) above is satisfied. Precisely, assume that
there exists a positive constant ¢ such that, for any integer p > 3, and all
fez,

pleP=2
P11 <P (32
Then, since P(f) = 0 for all f € Z, log P(e™¥) < % We refer the

reader to Bercu, Delyon and Rio [])] (see the proof of their Theorem 2.1) for
a proof.

4 Under sub-Gaussian tails on the left as-
sumptions

Here we assume that f(X;) admits a sub-Gaussian tail on the left for all
f € .Z. We show in the following theorem that Z — E[Z] is sub-Gaussian on
the left tail.

Theorem 4.1. Assume that

2
C(F) :=supsup — log P(e™) < oc. (4.1)
t>0 feF t



Then for any u € |0, 1],

Qriz)—z(u) < Qriz)-z(u) (a)
< \2log(1/u) (y/nC(F) +\/V,). (b)

Consequently, for any x > 0,

P(Z < E[Z] —x) <exp ( : 2) . ()

2(\/n0(9’) + \/Vn)

4.1 Application to classes of nonnegative functions

Let X4,...,X, be a finite sequence of independent random variables and
identically distributed according to a law P. Let .# be a countable class of
functions from X to [0, +o0o[ and define

Fo={f-P(f): feZF}. (4.2)

Define now .
Z = sup > _ g(Xy). (4.3)

9EF0 =1

Remark 4.2. Equivalently, one can consider the case of classes of bounded
from below functions which are centered under P.

Let us define

o? := sup Varp(f) := sup(P(f?) — P(f)?). (4.4)
feF fez

Proposition 4.3. One has

C(H) §U2+lsupP(f)2. (a)
6 fez

Consequently, for any x < 0,

l,2

] (B)
2(y/n(0® + Fsupses P(F)2) + V) )

where V,, is defined by (1.10) with ® := sup,c z, |g| = supse s |f — P(f)|.

P(Z < E[Z] —x) < exp (—



5 Suprema of randomized empirical processes

Let X4,...,X, be a finite sequence of independent random variables and
identically distributed according to a law P, valued in some measurable space
(X, F) with common distribution P. Let Y7, ..., Y, be a finite sequence of in-
dependent, identically distributed and centered real-valued random variables
with finite Laplace transform on a neighborhood of 0. And we assume that
the two sequences are independent. Let ¢ be a countable class of measurable
functions from X to [0, 1] and define

Z :=sup Y _ Yig(Xy). (5.1)
9€Y k=1
The deviations of Z above the mean when the Y, are independent standard
Gaussian random variables are studied in Marchina [I1], Section 2.7]. Let us
define v := E[sup,cq ¢*(X1)] < 1 and let 7, be the function defined on 0, co|
by

Yolw) i= a2/ \log(1 + v (er — 1)). (5.2)

Note that v,(z) = vV2vz(1+O(x)) as z goes to 0 and 7,(z) ~ v/2z as x goes
to infinity. We have for any = > 0,

IP’(Z —E[Z] > nv, (i) > < exp(—x). (5.3)

This result is based on a slighlty different use of martingale methods and
comparison inequalities which in fact allow to examine general separately
convex functions of independent random variables. However, we provide in
[T1] only right deviation inequalities and it seems not that easy to generalize
to obtain left deviation inequalities. Therefore, the objective here is to fill
this gap. In what follows, we establish a result in a more general setting
that Gaussian case. When we specify to the Gaussian case, we obtain a
result similar to ([5.3) with a better variance term v but with an additionnal
corrective term.

Theorem 5.1. Let Z be defined by (5.1)). Assume that Var(Y1) =1 and that
there exists a nondecreasing convex function R from [0, 00[ to [1,00] such
that

Efexp(—1%1)] < R() for any t >0, (5.4)
R(0) =1, and R:tw— R(Vt) is convex. (5.5)
Define
o? = sup Var(Y1g(X1)) = sup P(g?), (5.6)
geY geY
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and let the function {,2 i defined for anyt > 0 by
ly2 m(t) :=log(1+ o*(R(t) — 1)). (5.7)

We denote by G an envelope function of 4, that is g(x) < G(z) < 1 for any
x € X and any g € 4. Then, for any x > 0,

IP’(Z <E[Z] - nf}}R(z) - \/ﬁ) < exp(—1), (a)

where V,, is defined by (1.10) with ®(z,y) = |y|G(x).
Consequently, for any x > 0,

P(Z < BlZ] - nronn(S) = \2uVa ) < exp(-o), (v

where v, r, v > 0, s the function defined for any x > 0 by

2z
7v,R<x> = R_1<1 + U_1<€z - 1)) .

(5.8)

Remark 5.2. If there exists a nondecreasing convex function ¢ such that
(_y,(t) < L) for any t > 0, £(0) = 0 and t > {(\/t) is conver, then
R(t) = e'® satisfies hypotheses of the above theorem.

Remark 5.3. Note that if R(t) = exp(t?/2) (i.e. the Y} are sub-Gaussian),
and 0® =1, then (i 3 = 5.

Example 5.4 (Sub-Gaussian case). Here we assume that R(t) := exp(t?/2).
Clearly, this function R satisfies hypotheses of Theorem[5.1. Notice now that

Yo2.r = Vo2 Where the function 7,2 is defined by (5.2). Theorem leads
then to the following inequality

IP’(Z < E[Z] — nyp (Z) _ W) < exp(—a). (5.9)

Note that the variance term o? in the inequality above is better than the

variance term v = E[sup ey ¢°(X1)] in Inequality (5.3).

However, methods developed in [11)] allow us to consider the non-identically
distributed case, that is Z = sup,eq >p—y axYr g(Xy) where ay, ..., a, are a
sequence of positive reals.

Example 5.5 (Sub-Gamma case). Here we assume that

R(t) := exp (2(1252_”),

11



which satisfies the hypotheses of Theorem[5.1 Then

IP’(Z <E[Z] - nypes (z) _ W) < exp(—a), (5.10)

where

2x
Vo2 R ‘=
—Zp + /22 4+ 22,

Here, note that v,2 p = (V2022 +x)(1+0(x)) as x goes to 0, and Y,2 g ~ 2z
as x tends to infinity.

with z, :=log(1 4 o 2(e” — 1)). (5.11)

Example 5.6 (Symmetric exponential case). Here we assume that R(t) :=

1/(1 — ), which is equivalent to suppose that Y g eW, where € is a
Rademacher random variable, W is an exponential random variable with pa-
rameter 1 and the two random wvariables are independent. We can easily

verify that R satisfies the hypotheses of Theorem [5.1. Then

IP’(Z < E[Z] - nygz’RCi) - m> < exp(—x), (5.12)

where

20:/1 4+ 07 2(e* — 1
Yo2,p 1= \/ ( ) (5.13)
o2(e* — 1)

Here, note that v,2 g = 2V 0%z + O(x) as x goes to 0 and y,2 g ~ 2 as x
tends to infinity.

6 Proofs

The starting point of the proofs is a martingale decomposition of E[Z] — Z
which we briefly recall (we refer the reader to [10] for more details). First
by virtue of the monotone convergence theorem, we can suppose that .7
is a finite class of functions. Set Fy := {@&,Q} and for all £k = 1,...,n,
Fri=0(X1,...,Xg) and FF = o(X1,. .., Xp 1, Xpt1,. .., Xp). Let Ey (re-
spectively EF) denote the conditional expectation operator associated with
Fi (resp. FF). Set also ZW .= sup{nP,(f) — f(X) : f € Z} and
Zy, = Ei[Z]. Let us number the functions of the class .# and consider
the random variables

mi=1inf{i > 0:nP,(f;) = Z} and 7, := inf{i > 0: nP,(f;)— fi(Xx) = Z®}.

12



We notice that
Fr(Xi) £ Z =20 < f(X). (6.1)

Set now &, 1= Ei[fr, (Xp)], 7% = Z — ZW) — & and g := Ei[f-(Xp)] — &
Projecting then (6.1)) on Fj leads to
§e <&+ i < S+ Ex (6.2)

Since EX[f,, (Xi)] = P(fs,), the centering assumption on the elements of .Z
ensures that
Iy — Ly =&+ 1) — ]Ek_l[rk]. (63)

Thus we get the following decomposition:
ElZ]|-Z=Z + R?, (6.4)

where

n

Ez = Zfz, 5;; = —fk and R(r)z = Z(Ek,l[rk] — T'k).
k=1

k=1
Now the martingale R¢ is sub-Gaussian, as shown by the lemma below.
Lemma 6.1. For anyt > 0, we have
t*V,,
5
where V,, is defined by . Consequently, for any u €10, 1],

Qg (u) < L' (log(1/u)) < 2V, log(1/u). (b)

Proof of Lemma[6.1 We start by showing that

Uy () 1= log Elexp(tR2)] < (a)

Ei-1[ri] — re < Ep_pyr and Epy[(Beoa[ri] — re)?] < E[C 4] (6.5)

n

These bounds are stated and proved in Marchina [I0]. We briefly recall
below main arguments. First, note that r, > 0 by . Next, a property of
exchangeability of variables (see Lemma 3.10 in [I0]) shows that Ej_[ry] <
E, k1. Then we get the first bound of . The second bound follows
from a comparison inequality of generalized moments due to Bentkus [3,
Lemma 1] (see also Lemma 2.1 in Marchina [I1]). Indeed, since implies
0 < rp < 20(Xy), we have Ey_1[p(rk)] < E[p((r—k+1)] for any real-valued,
convex and differentiable function ¢ such that lim, , o ¢(z) = 0. Then,
since & — z2 is such a function and 74 = ry, we get

Bt [(Beilre] — ri)?] < Epalriy] < E[G 0] (6.6)

13



We recall that ¢ denotes a random variable with distribution function Fog(x,) 4
such that E[¢y] = Ej. Thus we have max(E[(?], E?) = E[¢?]. Applying now
the bound for martingales with differences bounded from above proved by
Bentkus [2] (see his Inequality (2.16)), we get for any t > 0,

Elexp(tRS)] < exp(t*V,,/2), (6.7)

which then gives (a). Now, it is a classical calculation that

(1Y,
%gg{t< 5 +x>}—\/2an, (6.8)

where the infimum is given by the optimal value ¢ = /22/V,. Finally,
Proposition (1v) ends the proof of (b). O

Now, in view of (6.4]), it remains us to bound up the CVaR (or the log-
Laplace) of Z¢ according to the assumptions made in different sections.

6.1 Proofs of Section 2l

Proofs in this section are almost identical to that of the article [I0]. Thus
we only give main arguments.

Proof of Theorem [2.1. The proof is similar to the proof of Theorem 3.2 in
[10]. First, note that one derive from Lemma (6.1 (a) and the usual Cramér-
Chernoft calculation that for any z > 0,

2

P(R® > z) < exp ( _ ;Vn) (6.9)

We bound up the log-Laplace of =Z¢ thanks to a Fuk-Nagaev type inequality
for martingales obtained by Courbot [6]. Hence, we first need to control the
quadratic variation. Since 73, is F*-measurable, the centering assumption on
the elements of .# yields that

Ev1[677] = Boa[&h] < ExiBE[f2 (Xi)] = Excr P(f2) < 07, (6.10)

where the first inequality follows from the conditionnal Jensen inequality.
Then, since £2 < ®(X},) and (1+z)log(1+z) —x > zlog(1+x)/2, Theorem
1 in Courbot [6] leads to the following inequality:

2

>_s/2 +nIP’<<I>(X1) > ””) (6.11)

P(=2, > ) < (1 4 :

sno?

14



for any z > 0 and any s > 0. Furthermore, E[Z] - Z =2+ R) <=0, + R?,
which yields that for any x > 0,
P(Z <E[Z] —z) < inf {P(Z;, >tz) +P(R;, > (1 —t)x)}. (6.12)

t€[0,1]

Since the optimization in ¢ in the right-hand side is difficult to calculate, we

take ¢ = 1/2 in the sequel. Finally, combining (6.12)), (6.11)) and ends
the proof of Theorem [2.1] O

Proof of Corollary[2.9. The proof relies on the following equality: for any
0> 1,

E[(E[Z] - Z).] = 6/000 P(E[Z] — Z > z)z'\dx. (6.13)

After calulation of this integral, we put s = {41 and we use the sub-additivity
of z — z* to conclude the proof. n

Proof of Theorem[2.4. The proof is similar to the proof of Theorem 3.3 in
[10]. Inequality (a) is the point (i7) of Propostion and Inequality (c)
follows immediately from (b) by the point (i) of the same Proposition
Let us prove (b). Since £ < ®(Xj), we have

CP(E0) < n'AF(®(X1)), (6.14)

where
1/¢

Cp(22) =

s (# z”: P, >t ]-"k_l))
k=1

t>0

[e.9]

Now, recalling (6.10]), the Fuk-Nagaev type inequality for martingale ob-
tained by Rio [I5] (see his Theorem 4.1) yields

Q= (u) < oy/2log(1/u) + nM pg Af (®(X7))u ", (6.15)

Combining Lemma (6.14) and the point (iii) of Proposition implies
Inequality (b) of the theorem and thus concludes the proof. O

Proof of Corollary[2.5. Inequality (a) follows from (2.4). To prove (b) we
proceed exactly as in Rio [I3, Theorem 5.1] (see also the proof of (b) of
Corollary 3.7 in [10]). O
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6.2 Proof of Section [3

Proof of Theorem[3.4. As in Theorem , we only have to prove (b). More-
over we already saw in the proof of Theorem that

(2% = zn: Er 1677 < no. (6.16)
k=1

Furthermore, as in ((6.10]), since 7 is F*-measurable, the conditionnal Jensen
inequality implies that for any ¢t > 0,

Ei-1[exp(t&})] < Ex1Epexp(—tfr, (Xi))] = Exa[Plexp(—tfr,))].  (6.17)

Whence, assumption (3.1]) on the elements of .# and an immediate induction
on n give that
o*t?
logElexp(t=2)] < n

<N A (6.18)

Now, it is a classical calculation that

. ot T
inf (2(+> = cxr + \/21'0'2, (619)

n
t€]0,1/c| 1—te) ¢t

where the infimum is given by the optimal value t = 2z/(Vo? + ¢v/2z).
Recalling ([1.6]), one conclude that for any u € |0, 1],

Q=, (u) < clog(1/u) + U\/m' (6.20)

Finally, combining Lemma [6.1], (6.20) and the point (iii) of Proposition
implies inequality (b) of the theorem and completes the proof. O

6.3 Proofs of Section 4]

Proof of Theorem [{.1. As previously mentioned, we only have to prove (b).
By reasoning in the same way as ([6.17)), the assumptions on the elements of
Z allow us to derive that
t2
log Elexp(t=7)] < n;C(ey@), (6.21)

for any ¢t > 0. Therefore, the same conclusion as in the proof of Theorem [3.2]
yields that

Q=4 (1) < \/2nC(F) log(1/u), (6.22)
for any u € ]0, 1[, which associated to Lemma and Proposition give
(b) and end the proof. O
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Proof of Proposition[4.3. Both inequality (c¢) of Theorem and the upper
bound on C(.%) (a) imply (b). Hence we only have to prove the upper bound
on C(%). Let g = f — P(f) € Fo. Note that —g = P(f) — f < P(f) and
Varp(g) = Varp(f) < o?, where o2 is defined by (4.4). Then Lemma 2.36 in
Bercu, Delyon and Rio [4] implies that

e < g s {PUP (o) (6:23)

where ¢ is the function defined by

1—x2
o(x) = ) Tlog(a)] T T1 (6.24)

2x if x>1.

The following lemma provides an upper bound for the function ¢. We refer
the reader to Lemma 2.37 and the proof of Theorem 2.33 in [4] for a proof.

1
Lemma 6.2. For any v > 0, ¢(x) < 2z + g(l — ).
Therefore combining this bound with (6.23)) one has

1 1
C(Fo) < 0 + —sup{(P(f)* — 0%)+} < o” + - sup P(f)?, (6.25)
6 re7 6 rer
which is exactly (a) of Proposition [4.3] O

6.4 Proof of Section [

Proof of Theorem[5.1. As previously, by an induction on n, to bound up
log Elexp(t Z2)] we only have to bound up the conditionnal Laplace of the
increments £. Let us denote by 7, the random variable Ey[g,, (Xx)]. Then,
we write £ = —ngYy. Now, since 7y is Fy—1 V 0(X)-measurable, Yj and 7y
are independent and one has for any ¢t > 0,

Ej_1[exp(t &) = Ex—1]exp(—(tne)Ys)]
< Egoa[R(tn)]
— B[R] (6.26)

Observe now that 0 < n? < 1 and E;_;[ni] < o? by a similar reasoning to
(6.10) by means of the conditionnal Jensen’s inequality. Therefore, applying
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(conditionally to Fj_1) a classical convex comparison due to Hoeffding [7]
(see his inequalities (4.1)—(4.2)) leads to

Ev_1[p(n?)] < E[p(0,2)] for any convex function ¢ : R — R,  (6.27)

where 6,2 is a Bernoulli random variable with parameter o2, independent of
all other random variables. Now, since we have assumed that the function R

is convex, (6.26)) becomes

Er_1lexp(t&y)] < Ek—1[R(t27713)] E[R(t%0,2)]
E[R(t052)]
=1+ 0*(R(t) - 1). (6.28)

Thus, as mentionned at the beginning of the proof, we derive by an induction
on n that for any ¢ > 0

log Elexp(t Z2)] < nlog(1 + o*(R(t) — 1)) = nl,z2 g(t). (6.29)

Combining now (/6.29), Lemma and Proposition (iv) and (i7i), con-
cludes the proof of Inequality (a) of Theorem. Next, to prove (b), we show

that 5;} < 7y2 . First, using the variational formula (1.5]), one has
loo (@) = inf{t ™ (lo2,p + ) }. (6.30)

Then, putting ¢, := R~ (1+07%(e* — 1)) in (6.30) concludes the proof. Note
that t, is optimal in the standard Gaussian case, that is R(t) = exp(t?/2)
and 02 = 1. O
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