Errata for "Concentration inequalities for separately convex function"

- page 2906, line -3. The displayed formula (1.3) should be $Z_{k}:=\mathbb{E}_{k}[Z]$.
- page 2907, last line. The displayed formula " $F\left(X_{1}, \ldots, X_{n}\right) \underset{\mathcal{H}_{+}^{1}}{\leq} \sum_{k=1}^{n} \varepsilon_{k}\left\|X_{k}\right\|$ " should be " $F\left(X_{1}, \ldots, X_{n}\right)-\mathbb{E}\left[F\left(X_{1}, \ldots, X_{n}\right)\right] \underset{\mathcal{H}_{+}^{1}}{\leq} 2 \sum_{k=1}^{n} \varepsilon_{k}\left\|X_{k}\right\|$ ".
- page 2909, lines 2-3 in Theorem 2.3. Replace "there exist nonnegative, \mathbb{L}^{r}-integrable and $\sigma\left(X_{k}\right)$-measurable random variables T_{k} and W_{k} " by "there exist nonnegative, \mathbb{L}^{r}-integrable random variables T_{k} and W_{k} such that $\mathbb{E}_{k}\left[T_{k}\right]$ and $\mathbb{E}_{k}\left[W_{k}\right]$ are independent of \mathcal{F}_{k-1} ".
- page 2909, line 9 in Theorem 2.3. In the right-hand side of (2.6), $(p-1)$ should be $(r-1)$.
- page 2913, line 6 in Example 5.2. In the displayed formula (5.3), $\|X\|^{r}$ should be $\mathbb{E}\left[\|X\|^{r}\right]$.
- page 2913, line 8 in Example 5.2. The displayed formula $Z=\sum_{f \in \mathcal{F}}\left|\sum_{k=1}^{n} f\left(X_{k}\right)\right|$ should be $Z=\sum_{f \in \mathcal{F}}\left|\sum_{k=1}^{n} a_{k} f\left(X_{k}\right)\right|$.
- page 2913, line 9 in Example 5.2. Replace "class of measurable real-valued functions" by "class of measurable real-valued functions such that $\mathbb{E}[f(X)]=0$ for all $f \in \mathscr{F}$."
- page 2913, line 11 in Example 5.2. Replace "envelop" by "envelope".
- page 2914, line 1 in Section 5.2. Add "Set also $a=\left(a_{1}, \ldots, a_{n}\right)$ ".
- pages 2915-2918. The weight function q should defined on $] 0,1[$ instead of $[0,1]$.
- page 2916 in Proposition 6.2. Add "where $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent Rademacher random variables, U_{1}, \ldots, U_{n} are independent random variables distributed uniformly on $[0,1]$ and these two families are independent" after the displayed formula.
- page 2916 in Remark 6.4. In the displayed formula, the suprema should be taken over $t \in \mathbb{R}$ such that $0<F_{X}(t)<1$.
- pages 2919-2921, in Section 7.1.3. To avoid any confusion, in all section, replace the positive deterministic reals $\sigma_{1}, \ldots, \sigma_{n}$ by a_{1}, \ldots, a_{n}. And add $a=\left(a_{1}, \ldots, a_{n}\right)$.
- page 2921, in Section 7.2. Add to the line 1 "In the sequel, we assume that the underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$ is rich enough to contain a random variable with uniform distribution over $[0,1]$, independent of all other considered random variables."
- page 2922, line 3 in the proof of Lemma 7.9. The displayed formula should be $\int_{0}^{\alpha} Q_{|X|}^{r}(u) d u=\int_{0}^{1} Q_{|X|}^{r}(u) Q_{\theta_{\alpha}}(u) d u=\sup _{\theta} \mathbb{E}\left[|X|^{r} \theta\right]$.
- page 2923, lines 1-2 in Example $7.13 \mathscr{F}=\left\{\mathbb{1}_{S}-\mathbb{P}(S): S \in \mathcal{S}\right\}$ should be " $\mathscr{F}=$ $\left\{\mathbb{1}_{S}-P(S): S \in \mathcal{S}\right\}$ where P is the common distribution of X_{1}, \ldots, X_{n} ".
- page 2925, line 1. "where $\tilde{X}_{k}:=\left(f\left(X_{k}\right)\right)_{f \in \mathscr{F}}$ " should be "where $\tilde{X}_{k}:=\left(f\left(X_{k}\right) g\left(X_{k}\right)\right)_{(f, g) \in \Gamma}$ "

