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1 Introduction

Let X1, . . . , Xn be a sequence of independent random variables valued in some
measurable space (X ,F) with common distribution P . Let Pn denote for every integer
n the empirical probability measure Pn := n−1(δX1 + . . .+ δXn). Let F be a countable
class of measurable functions f : X → R such that P (f) = 0 for all f ∈ F . In this Note,
we are concerned with concentration properties around the mean of the random variable

Z := sup{nPn(f) : f ∈ F}, (1.1)

when F satisfies a two-sided or a one-sided (from above) boundedness condition. Our
approach is based on a decomposition of Z −E[Z] into a sum of martingale increments
together with comparison inequalities for martingales with (two-sided or one-sided)
bounded increments proved by Bentkus [1] and Pinelis [7]. Before going further, let us
introduce some notations.

Definition 1.1. (i) Let α, β be two reals such that α < β. We say that a random variable θ
follows a Bernoulli distribution if it assumes exactly two values and we write θ ∼ Bm(α, β)

if
P(θ = β) = 1− P(θ = α) ∈ ]0 , 1[, and E[θ] = m. (1.2)

Notice that
Var(θ) = (m− α)(β −m). (1.3)

(ii) For any a ≥ 0, Γa stands for any centered Gaussian random variable with variance
equals to a.
(iii) For any a > 0, Πa stands for any Poisson random variable with parameter a. We also
denote by Π̃a the centered Poisson random variable Π̃a := Πa − a.
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Let us introduce the class of convex functions in which the comparison inequalities,
stated in this Note, are valid.

Definition 1.2. Let k ∈ N∗. As usual, we denote by Ck the space of k-times continuously
differentiable functions from R to R. We define the following class of functions:

Gk := {ϕ ∈ Ck−1 : ϕ, ϕ′, . . . , ϕ(k−1) are convex}. (1.4)

Furthermore, we use the classical notations x+ := max(0, x) and xα+ = (x+)
α. We now

recall the two following comparison results, proved by Bentkus [1] and Pinelis [7], which
are the main tools in our proofs.

Proposition 1.3 (Lemmas 4.4 and 4.5 in [1] and Theorem 2.1 and Remark 2.3 in [7]). Let
s21, . . . , s

2
n, β1, . . . , βn be positive reals. LetMn :=

∑n
k=1Xk be a martingale with respect

to a nondecreasing filtration (Fk) such thatM0 = 0,

Xk ≤ 1, and E[X2
k | Fk−1] ≤ s2k a.s. (1.5)

(i) Let s2 := n−1(s21 + . . .+ s2n) and Sn := θ1 + . . .+ θn be a sum of n independent copies of
a random variable θ with distribution B0(−s2, 1) (defined by (1.2)). Then for any ϕ ∈ G2,

E[ϕ(Mn)] ≤ E[ϕ(Sn)]. (a)

(ii) Additionally to (1.5), assuming that

Ek−1[X
3
k+] ≤ βk a.s., and β :=

1

n

n∑
k=1

βk ≤ s2, (1.6)

we have for any ϕ ∈ G3,

E[ϕ(Mn)] ≤ E[ϕ(Γn(s2−β) + Π̃nβ)], (b)

where Γn(s2−β) and Π̃nβ are independent and respectively defined by Definition 1.1 (ii)
and (iii).

Remark 1.4. In fact, the results in the original papers are stated in the following slightly
smaller class of functions:

Hα
+ :=

{
ϕ :ϕ(u) =

∫ ∞

−∞
(u− t)α+ µ(dt) for some Borel measure µ ≥ 0 on R

and all u ∈ R
}
,

for α ∈ {2, 3}. The extensions to Gα follow from a result of Pinelis [8, Corollary 5.8] (see
also [6, Section 2]).

Remark 1.5. From moment comparison inequalities in Hα
+, such as in the above Propo-

sition, one can derive tail comparison inequalities. We refer the reader to [4, 5, 6] for
the statements of these results and for some more details.

Finally, we use the notations:

Ek := E sup
f∈F

Pk(f) for any k = 1, . . . , n and Ē := n−1(E1 + . . .+ En). (1.7)

2 Results

2.1 Two-sided boundedness condition

Here, by two-sided boundedness condition, we mean that F is a countable class
of measurable functions with values in [−a , 1] for some positive real a. Let ψ be the
function defined on [0 , 1] by

ψ(x) = x(1− x) if x ∈ [0 , 1/2] and ψ(x) = 1/4 if x ∈ ]1/2 , 1]. (2.1)
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Theorem 2.1. Let F be a countable class of measurable functions from X into [−a , 1]
such that P (f) = 0 for all f ∈ F . Let Z be defined by (1.1).
(i) Case a ≥ 1.
Let θ be a Bernoulli random variable with distribution B0(−a, 1) (defined by (1.2)). Let
θ1, . . . , θn be n independent copies of θ and let Sn := θ1 + . . .+ θn. Then for any function
ϕ ∈ G2,

E[ϕ(Z − EZ)] ≤ E[ϕ(Sn)]. (a)

(ii) Case a < 1.
Let ϑ be a Bernoulli random variable with distribution

B0

(
− (a+ 1)2 ψ

(a+ Ē

a+ 1

)
, 1

)
(defined by (1.2)), where ψ is defined by (2.1), and Ē is defined by (1.7). Let ϑ1, . . . , ϑn
be n independent copies of ϑ and let Tn := ϑ1 + . . .+ ϑn. Then for any function ϕ ∈ G2,

E[ϕ(Z − EZ)] ≤ E[ϕ(Tn)]. (b)

Remark 2.2. If the class F satisfies the uniform law of large numbers, that is the
random variable supf∈F |Pn(f)| converges to 0 in probability, then En decreases to 0
(see, for instance, Section 2.4 of van der Vaart and Wellner [10]) and so Ē also decreases
to 0. This ensures that n 7→ (a+ 1)2ψ((a+ Ē)/(a+ 1)) (which is also the variance of ϑ) is
nonincreasing and tends to a as n tends to infinity.

Example 2.3 (Set-indexed empirical processes). Let S be a countable class of measur-
able sets of X . We consider the class of functions

F =
{1S − P (S)

1− P (S)
: S ∈ S

}
. (2.2)

Let p := sup{P (S) : S ∈ S } and we assume that p < 1. Since x 7→ x/(1− x) is increasing
on [0 , 1[, we can apply Theorem 2.1 with a = p/(1 − p). Hence with the notations of
Theorem 2.1:
(i) If p > 1/2, then for any ϕ ∈ G2, E[ϕ(Z − E[Z])] ≤ E[ϕ(Sn)], and θ has the distribution
B0(−p/(1− p), 1).
(ii) If p < 1/2, then for any ϕ ∈ G2, E[ϕ(Z − E[Z])] ≤ E[ϕ(Tn)], and ϑ has the distribution
B0(−(1− p)−2ψ(Ē + p(1− Ē)), 1).

Theorem 3.1 of Rio [9], when applied to Z (see also his Theorem 4.2 (a)), provides a
Bennett-type inequality for classes of sets with small measures under P . Precisely the
condition is En + p(1− En) ≤ 1/2. Hence since G2 contains all increasing exponential
functions x 7→ etx, t > 0, the Case (ii) above completes Rio’s result in this situation.

2.2 One-sided boundedness condition

Here, by one-sided boundedness condition, we mean that F is a countable class of
measurable functions with values in ]−∞ , 1]. Let ρ be the function defined on [0 , 1] by

ρ(x) = x(1− x)2 if x ∈ [0 , 1/3] and ρ(x) = 4/27 if x ∈ ]1/3 , 1]. (2.3)

Theorem 2.4. Let F be a countable class of measurable functions from X into ]−∞ , 1]

such that P (f) = 0 for any f ∈ F . Let Z be defined by (1.1). Define also

σ2 := sup{P (f2) : f ∈ F} and m3
+ := sup{P (f3+) : f ∈ F}, (2.4)

and
v2 := σ2 + 2ψ(Ē) and β3

+ := m3
+ + 3 ρ(Ē). (2.5)
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(i) Let θ be a Bernoulli random variable with distribution B0(−v2, 1) (defined by (1.2)).
Let θ1, . . . , θn be n independent copies of θ and let Sn := θ1 + . . . + θn. Then for any
function ϕ ∈ G2,

E[ϕ(Z − E[Z])] ≤ E[ϕ(Sn)]. (a)

(ii) Let β := min{β3
+, v

2}. Then for any function ϕ ∈ G3,

E[ϕ(Z − E[Z])] ≤ E[ϕ(Γn(v2−β) + Π̃nβ)], (b)

where Γn(v2−β) and Π̃nβ are independent and respectively defined by Definition 1.1 (ii)
and (iii).

Remark 2.5. Inequalities (a) and (b) of Theorem 2.4 are not easy to compare directly. To
this end, we start by observing that Inequality (a) yields the following (see [1, Theorem
1.1]):

E[ϕ(Z − E[Z])] ≤ E[ϕ(Π̃nβ)] for any ϕ ∈ G2. (a′)

One can find in Pinelis [6] a thorough study of the comparison between the right-hand
sides of (b) and (a′) as well as with other classical bounds. Let us mention here some
facts.
(i) If β = v2, then the right-hand side of (b) is equal to the right-hand side of (a′). Thus,
since G3 ⊂ G2, Inequality (b) is relevant with respect to (a) if and only if β3

+ < v2 (see also
the point (ii) below).
(ii) For any v2 > 0 and any ε ∈ ]0 , 1[,

E[ϕ(Γ(1−ε)v2 + Π̃εv2)] ≤ E[ϕ(Π̃v2)] for any ϕ ∈ G2. (2.6)

3 Proofs

The starting point of the proofs is a martingale decomposition of Z which we
briefly recall. Firstly by virtue of the monotone convergence theorem, we can sup-
pose that F is a finite class of functions. Set F0 := {∅,Ω}, Fk := σ(X1, . . . , Xk) and
Fk

n := σ(X1, . . . , Xk−1, Xk+1, . . . , Xn) for all k = 1, . . . , n. Let Ek (respectively Ek
n) de-

note the conditional expectation operator associated with Fk (resp. Fk
n). Set also

Z(k) := sup{nPn(f) − f(Xk) : f ∈ F} and Zk := Ek[Z]. Let us number the functions of
the class F and consider the random variables

τ := inf{i > 0 : nPn(fi) = Z} and τk := inf{i > 0 : nPn(fi)− fi(Xk) = Z(k)}.

We notice that
fτk(Xk) ≤ Z − Z(k) ≤ fτ (Xk). (3.1)

Set now ξk := Ek[fτk(Xk)] and let rk be the nonnegative random variable such that
ξk + rk = Zk − Ek[Z

(k)]. Since Ek
n[fτk(Xk)] = P (fτk) (see, for instance, Section 3.2 in [3,

Lemma 3.10]), the centering assumption on the elements of F ensures that Ek−1[ξk] = 0

and thus

Z − E[Z] =
n∑

k=1

∆k, where ∆k := ξk + rk − Ek−1[rk]. (3.2)

The important point is that Ek−1[rk] is a corrective term which is essentially small. This
is the statement of the following lemma:

Lemma 3.1. We have 0 ≤ Ek−1[rk] ≤ En−k+1 ≤ 1 a.s.

The proof is based on a property of exchangeability of variables, proved in Marchina
[3]. Since it is the fundamental tool of the paper, we give again the proof for sake of
completeness.
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Proof of Lemma 3.1. Since f ≤ 1 for any f ∈ F , Ek ≤ 1 for any k = 1, . . . , n. Moreover,
rk ≥ 0 which implies Ek−1[rk] ≥ 0. Let us now prove the main part Ek−1[rk] ≤ En−k+1.
We start by the following property of exchangeability of variables.

Lemma 3.2. For any integer j ≥ k, Ek−1[fτ (Xk)] = Ek−1[fτ (Xj)] a.s.

Proof of Lemma 3.2. By the definition of the random variable τ , for every permutation
on n elements σ, τ(X1, . . . , Xn) = τ ◦ σ(X1, . . . , Xn) almost surely. Applying now this
fact to σ = (k j) (the transposition which exchanges k and j), it suffices to use Fubini’s
theorem (recalling that j ≥ k) to complete the proof.

Hence,

Ek−1[fτ (Xk)] = Ek−1[fτ (Xk) + . . .+ fτ (Xn)]/(n− k + 1)

≤ Ek−1 sup
f∈F

{f(Xk) + . . .+ f(Xn)}/(n− k + 1) = En−k+1. (3.3)

Recalling that Ek−1[ξk] = 0, (3.1) yields that Ek−1[rk] ≤ Ek−1[fτ (Xk)], which combined
with (3.3) end the proof of Lemma 3.1.

We are now in position to prove Theorem 2.1.

Proof of Theorem 2.1. Observe first that ∆k ≤ 1 by (3.1) and the uniform boundedness
condition on F . Then, in view of Proposition 1.3 (i), it remains us to bound up the
conditional variance with respect to Fk−1 of ∆k. This is the subject of the following
lemma:

Lemma 3.3. For any k = 1, . . . , n,

Ek−1[∆
2
k] ≤ sup

m∈[0,En−k+1]

(m+ a)(1−m) a.s.

Proof of Lemma 3.3. A classical result due to Hoeffding [2] (see his Inequalities (4.1)
and (4.2)) states that any bounded random variable X, such that a ≤ X ≤ b for some
reals a and b, satisfies

E[ϕ(X)] ≤ E[ϕ(θ)] for any convex function ϕ, (3.4)

where θ is a Bernoulli random variable with distribution BE[X](a, b) (defined by (1.2)).
In particular, Var(X) is lower than Var(θ). We apply this result conditionally to Fk−1 to
the variable ξk + rk which has its values in [−a , 1] by (3.1). Recalling now (1.3), one
immediately obtains

Var(ξk + rk | Fk−1) ≤ (Ek−1[rk] + a)(1− Ek−1[rk]) a.s., (3.5)

which combined with Lemma 3.1 conclude the proof of Lemma 3.3.

Let us now complete the proof of Theorem 2.1. Define the function V by

V (m) := (m+ a)(1−m) for any m ∈ [0 , En−k+1]. (3.6)

Case (i): a ≥ 1. Since (1− a)/2 ≤ 0, V is decreasing on [0 , En−k+1] and then by Lemma
3.3, Ek−1[∆

2
k] ≤ a. Thus Inequality (a) follows by Proposition 1.3 (i).

Case (ii): a < 1. Here the maximum of V is reached at

m = min(En−k+1, (1− a)/2).
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Thus Lemma 3.3 implies

Ek−1[∆
2
k] ≤ (a+ 1)2 ψ

(a+ En−k+1

a+ 1

)
. (3.7)

Furthermore, since ψ is concave,

1

n

n∑
k=1

ψ
(a+ En−k+1

a+ 1

)
≤ ψ

(a+ Ē

a+ 1

)
. (3.8)

Hence Inequality (b) follows again from Proposition 1.3 (i) together with (3.7)–(3.8). The
proof of Theorem 2.1 is now complete.

Proof of Theorem 2.4. Case (i). We start from (3.2). Since Ek−1[ξk] = 0, we get

Ek−1[∆
2
k] = Ek−1[(ξk + rk)

2]− (Ek−1[rk])
2
. (3.9)

Since Ek
n[f

2
τk
(Xk)] = P (f2τk), the conditional Jensen inequality implies that Ek−1[ξ

2
k] ≤ σ2.

Therefore, from (3.9) and the fact that (3.1) implies ξk + rk ≤ 1, we get

Ek−1[∆
2
k] ≤ σ2 + Ek−1[2ξkrk + r2k]− (Ek−1[rk])

2

≤ σ2 + 2Ek−1[rk]− (Ek−1[rk])
2

≤ σ2 + 2ψ(Ek−1[rk])

≤ σ2 + 2ψ(En−k+1), (3.10)

where the last inequality follows from Lemma 3.1 and ψ is the nondecreasing function
already defined in (2.1). Then the same conclusion as in the proof of the Case (ii) of
Theorem 2.1 allows us to conclude the proof of Inequality (a) of Theorem 2.4.

Case (ii). Since x 7→ x3+ is a convex function, we have

∆3
k+ ≤ (ξk − Ek−1[rk])

3
+ + 3 rk (ξk + rk − Ek−1[rk])

2
+ . (3.11)

In the same way as previously, since Ek
n[f

3
τk+

(Xk)] = P (f3τk+), one has Ek−1[ξ
3
k+] ≤ m3

+.
Therefrom, recalling that rk ≥ 0 and ξk + rk ≤ 1, we get

Ek−1[∆
3
k+] ≤ m3

+ + 3 ρ(Ek−1[rk]) ≤ m3
+ + 3 ρ(En−k+1), (3.12)

where the last inequality follows from Lemma 3.1 and ρ is the nondecreasing function
defined in (2.3). Since ρ is concave, we complete the proof in the same way as the Case
(i) by using Proposition 1.3 (ii) in place of Proposition 1.3 (i).

References

[1] V. Bentkus. (2004). On Hoeffding’s inequalities, Ann. Probab. 32, no. 2, 1650–1673.
MR-2060313

[2] W. Hoeffding. (1963). Probability inequalities for sums of bounded random variables. J. Amer.
Statist. Assoc. 58, 13–30.

[3] A. Marchina. (2017). Concentration inequalities for suprema of unbounded empirical pro-
cesses. Preprint on <hal-01545101>.

[4] I. Pinelis. (1998). Optimal tail comparison based on comparison of moments.High dimensional
probability, Springer, pp. 297–314. MR-1652335

[5] I. Pinelis. (1999). Fractional sums and integrals of r-concave tails and applications to com-
parison probability inequalities. Advances in stochastic inequalities (Atlanta, GA, 1997) 234,
149–168. MR-1694770

ECP 23 (2018), paper 33.
Page 6/7

http://www.imstat.org/ecp/

http://www.ams.org/mathscinet-getitem?mr=2060313
https://hal.archives-ouvertes.fr/hal-01545101
http://www.ams.org/mathscinet-getitem?mr=1652335
http://www.ams.org/mathscinet-getitem?mr=1694770
http://dx.doi.org/10.1214/18-ECP137
http://www.imstat.org/ecp/


Comparison inequalities for suprema of bounded empirical processes

[6] I. Pinelis. (2009). On the Bennett-Hoeffding inequality. Preprint. Available at arXiv:0902.4058
[math.PR].

[7] I. Pinelis. (2014). On the Bennett-Hoeffding inequality. Ann. Inst. H. Poincaré Probab. Statist.,
50, no. 1, 15–27. MR-3161520

[8] I. Pinelis. (2016). Convex cones of generalized multiply monotone functions and the dual
cones. Banach J. Math. Anal. 10, no. 4, 864–897. MR-3555754

[9] E. Rio. (2001). Inégalités de concentration pour les processus empiriques de classes de
parties. Probab. Theory Related Fields 119, no. 2, 163–175.

[10] A.W. van der Vaart and J.A. Wellner. (1996). Weak convergence and empirical processes: With
applications to Statistics. Springer Series in Statistics. New-York: Springer. MR-1385671

Acknowledgments. I am grateful to Emmanuel Rio for several helpful discussions.

ECP 23 (2018), paper 33.
Page 7/7

http://www.imstat.org/ecp/

http://arXiv.org/abs/0902.4058
http://www.ams.org/mathscinet-getitem?mr=3161520
http://www.ams.org/mathscinet-getitem?mr=3555754
http://www.ams.org/mathscinet-getitem?mr=1385671
http://dx.doi.org/10.1214/18-ECP137
http://www.imstat.org/ecp/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

• Secure publication (LOCKSS1)

• Easy interface (EJMS2)

Economical model of EJP-ECP

• Non profit, sponsored by IMS3, BS4 , ProjectEuclid5

• Purely electronic

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System http://www.vtex.lt/en/ejms.html
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/LOCKSS
http://www.vtex.lt/en/ejms.html
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://secure.imstat.org/secure/orders/donations.asp
http://www.lockss.org/
http://www.vtex.lt/en/ejms.html
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Results
	Two-sided boundedness condition
	One-sided boundedness condition

	Proofs
	References

